Efficient solution of Maxwell's equations for geometries with repeating patterns by an exchange of discretization directions in the aperiodic Fourier modal method

نویسندگان

  • M. Pisarenco
  • Joseph M. Maubach
  • I. D. Setija
  • R. M. M. Mattheij
چکیده

The aperiodic Fourier modal method in contrast-field formulation is a numerical discretization and solution technique for solving scattering problems in electromagnetics. Typically, spectral discretization is used in the finite periodic direction and spatial discretization in the orthogonal direction. In the light of the fact that the structures of interest often have a large width-toheight ratio and that the two discretization approaches have different computational complexities, we propose exchanging the directions for spatial and spectral discretization. Moreover, if the scatterer has repeating patterns, swapping the discretization directions facilitates the reuse of previous computations. Therefore, the new method is suited for scattering from objects with a finite number of periods, such as gratings, memory arrays, metamaterials, etc. Numerical experiments demonstrate a considerable reduction of the computational costs in terms of time and memory. For a specific test case considered in this paper, the new method (based on alternative discretization) is 40 times faster and requires 100 times less memory than the method based on classical discretization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MPI- and CUDA- implementations of modal finite difference method for P-SV wave propagation modeling

Among different discretization approaches, Finite Difference Method (FDM) is widely used for acoustic and elastic full-wave form modeling. An inevitable deficit of the technique, however, is its sever requirement to computational resources. A promising solution is parallelization, where the problem is broken into several segments, and the calculations are distributed over different processors. ...

متن کامل

Near- to far-field transformation in the aperiodic Fourier modal method.

This paper addresses the task of obtaining the far-field spectrum for a finite structure given the near-field calculated by the aperiodic Fourier modal method in contrast-field formulation (AFMM-CFF). The AFMM-CFF efficiently calculates the solution to Maxwell's equations for a finite structure by truncating the computational domain with perfectly matched layers (PMLs). However, this limits the...

متن کامل

Incompressible laminar flow computations by an upwind least-squares meshless method

In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...

متن کامل

Thermal Development for Ducts of Arbitrary Cross Sections by Boundary-Fitted Coordinate Transformation Method

The non-orthogonal boundary-fitted coordinate transformation method is applied to the solution of steady three-dimensional momentum and energy equations in laminar flow to obtain temperature field and Nusselt numbers in the thermal entry region of straight ducts of different cross sectional geometries. The conservation equations originally written in Cartesian coordinates are parabolized in the...

متن کامل

On the complexity of aperiodic Fourier modal methods for finite periodic structures

The Fourier modal method (FMM) is based on Fourier expansions of the electromagnetic field and is inherently built for infinitely periodic structures. When the infinite periodicity assumption is not realistic, the finiteness of the structure has to be incorporated into the model. In this paper we discuss the recent extensions of the FMM for finite periodic structures and analyze their complexit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2012